Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis.

نویسندگان

  • Richard G Manzon
  • Robert J Denver
چکیده

Several hypotheses have been proposed to explain the increase and sustained expression of pituitary thyrotropin (TSH) in the presence of elevated plasma thyroid hormone (TH) concentrations at metamorphic climax in amphibians. It has been proposed that the negative feedback of TH on TSH is inoperative until metamorphic climax, and that it is established at this time by the upregulation of pituitary deiodinase type II (DII); DII converts thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)). However, earlier investigators, using indirect measures of TSH, reported that TH negative feedback on TSH was functional in premetamorphic tadpoles. In an effort to understand pituitary TSH regulation during amphibian metamorphosis, we analyzed multiple pituitary genes known or hypothesized to be involved in TSH regulation in tadpoles of Xenopus laevis. Tadpole pituitary explant cultures were used to examine direct negative feedback on TSH mRNA expression. Negative feedback is operative in the early prometamorphic tadpole pituitary and both T(3) and T(4) can downregulate TSH mRNA expression throughout metamorphosis. The expression of both DII and TH receptor betaA mRNAs increased during development and peaked at climax; however, these increases coincided with similar increases in deiodinase type III, which inactivates TH. Moreover, corticotropin-releasing factor (CRF) receptors, CRF binding protein and thyrotropin-releasing hormone receptor type 2 mRNA expression also peaked at climax. Our data suggest that the regulation of TSH is more complex than the timing of DII expression, and likely involves a balance between stimulation of TSH synthesis and secretion by neuropeptides (e.g. CRF) of hypothalamic or pituitary origin, increased pituitary sensitivity to neuropeptides through upregulation of their receptors, and intrapituitary TH levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis.

Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating pr...

متن کامل

Programming neuroendocrine stress axis activity by exposure to glucocorticoids during postembryonic development of the frog, Xenopus laevis.

Exposure to elevated glucocorticoids during early mammalian development can have profound, long-term consequences for health and disease. However, it is not known whether such actions occur in nonmammalian species, and if they do, whether the molecular physiological mechanisms are evolutionarily conserved. We investigated the effects of dietary restriction, which elevates endogenous corticoster...

متن کامل

Thyroid hormone-dependent differential regulation of multiple arginase genes during amphibian metamorphosis.

We have cloned three nonhepatic arginase genes in Xenopus laevis. The deduced amino acid sequences of the three arginases are almost identical and share about 60% identity with mammalian as well as Xenopus liver arginase. Both the liver and nonhepatic arginase genes are activated early during embryogenesis. The liver arginase gene is strongly expressed in tadpole liver, but weakly in other tiss...

متن کامل

The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis.

Developing Xenopus laevis experience two periods of muscle differentiation, once during embryogenesis and again at metamorphosis. During metamorphosis, thyroid hormone induces both muscle growth in the limbs and muscle death in the tail. In mammals, the muscle creatine kinase (MCK) gene is activated during the differentiation from myoblasts to myocytes and has served as both a marker for muscle...

متن کامل

Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis.

Corticosteroids, the primary circulating vertebrate stress hormones, are known to potentiate the actions of thyroid hormone in amphibian metamorphosis. Environmental modulation of the production of stress hormones may be one way that tadpoles respond to variation in their larval habitat, and thus control the timing of metamorphosis. Thyroid hormone and corticosteroids act through structurally s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 182 2  شماره 

صفحات  -

تاریخ انتشار 2004